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ABSTRACT
The effects of dairy and dairy-derived products on the human gut microbiota remains under
studied. A systematic literature search was conducted using Medline, CINAHL, Embase, Scopus, and 
PubMed databases with the aim of collating evidence on the intakes of all types of dairy and their 
effects on the gut microbiota in adults. Risk of bias was assessed using the Cochrane risk-of-bias tool. 
The search resulted in 6,592 studies, of which eight randomized controlled trials (RCTs) met pre- 
determined eligibility criteria for inclusion, consisting of a total of 468 participants. Seven studies 
assessed the effect of type of dairy (milk, yogurt, and kefir) and dairy derivatives (whey and casein) on 
the gut microbiota, and one study assessed the effect of the quantity of dairy (high dairy vs low dairy). 
Three studies showed that dairy types consumed (milk, yogurt, and kefir) increased the abundance of 
beneficial genera Lactobacillus and Bifidobacterium. One study showed that yogurt reduced the 
abundance of Bacteroides fragilis, a pathogenic strain. Whey and casein isolates and the quantity of 
dairy consumed did not prompt changes to the gut microbiota composition. All but one study 
reported no changes to bacterial diversity in response to dairy interventions and one study reported 
reduction in bacterial diversity in response to milk intake.In conclusion, the results of this review 
suggest that dairy products such as milk, yogurt, and kefir may modulate the gut microbiota 
composition in favor to the host. However, the broader health implications of these findings remain 
unclear and warrant further studies.
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Introduction

Dairy and dairy-derived products are a common 
component of many diets and influence physiological 
functions.1-4 Dairy products, including milk, yogurt 
and cheese, are generally considered nutrient-dense 
foods that contain proteins, calcium, and other essen
tial nutrients such as magnesium, potassium, phos
phorus, zinc, and B vitamins and their intake is 
associated with higher diet quality.5,6 The health prop
erties of dairy foods have been the focus of intense 
research interest, evident from the substantial volume 
of published studies investigating the associations 
between dairy consumption and diseases such as car
diovascular disease (CVD), type 2 diabetes mellitus 

(T2DM), obesity, and osteoporosis.1,7-18 However, the 
influence of dairy consumption on health outcomes is 
equivocal and often controversial, with some studies 
suggesting a detrimental impact on health outcomes 
such as fractures19 and even clinical depression20 and 
both positive and inverse associations observed 
between dairy intake and CVD,7-10 T2DM11-14 and 
obesity.15,16 This may be largely due to the complex 
nutritional composition of dairy products, which also 
poses challenges in understanding the underlying 
mechanism driving these observed associations.

The majority of the health impacts of dairy may 
be related to its nutritional composition and caloric 
content, however, dairy products may also 
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influence health outcomes via the gut microbiota. 
It is increasingly understood that modulating the 
gut microbiota is a key pathway by which dietary 
intakes may influence health outcomes.21 The gut 
microbiota is a dynamic metabolic organ that 
exerts diverse functions both localized to the gut 
and extending to peripheral organs.22,23 Diet in 
conjunction with other factors such as host genet
ics, age, sex and medication use, influences the 
structure and function of the gut microbiota.22,24- 

27 Although there is emerging evidence that over
all diet quality28,29 and individual macronutrients 
and micronutrients of diet have a role in influen
cing the gut microbiota composition,24,30 the par
ticular influence of dairy consumption on the gut 
microbiota composition is yet unclear.

Generally, a total of 3–4 serves/day of dairy 
products is recommended for adults, although 
this amount may vary depending on age, 
sex, and other physical requirements.31,32 

Consumers in many countries can access 
a wide range of dairy products, including milk 
with varying fat content and fortified with addi
tional vitamins and minerals, fermented milk/ 
dairy (e.g. kefir, yogurt, cheese) and milk/dairy 
derivatives (e.g. casein, whey). Each of these 
products possesses distinct biological profiles 
and nutrient characteristics that may differen
tially influence the gut microbiota composition. 
Evidence from animal studies show that compo
nents of milk (e.g. fat33 and protein34) and dairy 
derivatives (e.g. casein and whey isolates35) can 
prompt compositional changes to the gut micro
biota, whilst there is some limited evidence in 
humans to show the impacts of some dairy 
groups (e.g. yogurt, acidified milk) on the gut 
microbiota.36 Therefore, we aimed to undertake 
a comprehensive systematic literature review of 
extant intervention studies examining the influ
ence of type of dairy products and dairy deriva
tives, including the quantity consumed, on 
human gut microbiota composition. The pri
mary aim of our study was to investigate 
changes in the gut microbiota composition, mea
sured in feces, in terms of relative abundance, 
colony forming units (CFU), or bacterial diver
sity (alpha and beta diversity) in response to 
dairy product consumption. Also, we further 
elaborated on mechanistic pathways by which 

dairy products may influence the gut microbiota 
composition.

Methods

Literature search

This review was written in accordance with the 
PRISMA (Preferred Reporting Items for Systematic 
reviews and Meta-Analyzes) statement37 and was 
registered on PROSPERO (CRD42019137318). 
A search strategy was developed based on the research 
question (Table 1). Studies were identified using the 
following databases: Medline, CINAHL, Embase, 
Scopus and PubMed. Medical subject headings 
(MeSH) terms used in the search were related to 
milk and milk derived products (bovine milk OR 
cow* milk OR milk product* OR dairy product* OR 
cultured milk product* OR cheese OR yogurt OR kefir 
OR fermented dairy OR milk cream OR casein OR 
casein isolates OR casein concentrates OR whey OR 
whey isolates OR whey concentrates OR beta-casein) 
and gut microbiota (gut microb* OR fecal microb* OR 
gastrointestinal microbiome OR 16sRNA sequencing 
OR meta-genomics). The search strategy identified 
articles published since journal inception up to 
February 2019.

The inclusion criteria were: randomized con
trolled trials (RCTs), including cross-over studies; 
RCTs that included both healthy and diseased sub
jects (clinical); published in English; included cow’s 
milk/milk-derived products as intervention (e.g. 
fermented or non-fermented dairy, whey protein, 
and milk protein supplements); and gut microbiota 
as the primary or secondary outcome (Table 1). 
Plant proteins, animal proteins, other sources of 
milk (sheep, goat, donkey, and human), and stan
dard diets were considered as the comparator. 

Table 1. PICOS criteria for inclusion.
Parameter Criteria

Population Human participants, both clinical (diseased e.g. CVD, T2DM) 
and healthy

Intervention Bovine/cow’s milk 
Fermented/cultured dairy 
Casein/whey isolates 
Milk protein supplements

Comparator Other proteins (e.g. soy, meat) 
Other milk types (sheep, goat, donkey and human) 
Standard diet 
No dairy

Outcomes Gut microbiota composition assessed from faeces

CVD: cardiovascular disease; T2DM: diabetes 2 mellitus.
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Controls with no intervention/placebo were also 
considered as comparators. Additionally, studies 
that compared the effects of the quantity of dairy 
consumed were included. However, studies that 
examined the effects of non-dairy ingredients (e.g. 
prebiotic and probiotic supplement) that used dairy 
products as a medium were excluded (e.g. a yogurt 
enriched with a prebiotics/probiotics vs yogurt 
without prebiotic/probiotic supplement). Studies 
that investigated the changes in the gut microbiota 
composition (i.e. relative abundance, CFU, bacter
ial diversity) using any analysis techniques such as 
16S rRNA, meta-genomics, qPCR, and culture 
dependant techniques were qualified to be 
included.

Data extraction

Titles and/or abstracts of studies were retrieved 
using the search strategy and two independent 
review authors (HA, VC) identified studies that 
met the inclusion criteria. The full texts of these 
potentially eligible studies were retrieved and inde
pendently assessed by two authors. Any disagree
ment was resolved through discussion with a third 
reviewer (WM, TR, AL).

A standardized, piloted form was used to extract 
data from the included studies for the assessment of 
study quality and evidence synthesis. Extracted 
study information included: study design; setting, 
sample size; study period; participant characteris
tics (age, sex, comorbidities); details of the inter
vention and comparator (quantity, duration); 
changes in the gut microbiota (CFU, relative abun
dance, single species, alpha, or beta diversity) and 
time points of assessment; and information for 
assessment of risk of bias. Four authors (HA, SD, 
MW, EM) extracted data independently and dis
crepancies identified were resolved through discus
sion with a fifth author (WM).

Risk of bias assessment

Risk of bias was assessed by four independent 
authors (HA, SD, MW, EM) using the Cochrane 
risk-of-bias tool for randomized controlled trials.38 

This is a 5-domain tool with signaling questions 
that assesses the risk of bias due to randomization, 
deviations from intended interventions, missing 

outcome data, measurement of the outcome, and 
selection of reported results. The signaling ques
tions in each domain will assist in judging the risk 
of bias in the relevant domain (i.e. high risk, low 
risk and some concerns) with the aid of a scoring 
algorithm. Finally, the overall risk of bias of the 
study was judged as low risk of bias, some concerns, 
or high risk of bias based on the judgment received 
in each individual domain. Conflicting judgment 
for studies were resolved collaboratively.

Study results

As represented in Figure 1, the search strategy 
resulted in 5093 de-duplicated studies that were 
screened to identify eight eligible studies for 
inclusion.

Study characteristics

A total of 468 participants were enrolled in the 
included studies. Trials ran for between 3 and 
24 weeks with 12 weeks being the most common 
trial length (n = 3/8). Of the eight studies 
included, seven assessed the effect of dairy type 
(milk, yogurt, and kefir) and dairy derivatives 
(whey and casein) on the gut microbiota,39-45 

and one study assessed the effect of consumed 
dairy quantity (high dairy vs low dairy) on the 
gut microbiota.46 The mean age of the partici
pants was 39 years (range 32–44 years). Seven 
out of eight studies included both males and 

Figure 1. Prisma flow diagram.
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females40-46 with one study including only 
males.39 Studies were conducted in several coun
tries including Switzerland, France, Denmark, 
Turkey, Japan, United States of America, and 
Canada (Table 2). Two studies were led by the 
same researcher.41,42 Risk of bias varied across 
studies: two studies were considered low risk of 
bias,44,45 five studies were considered to have 
some concerns,39,41-43,46 and one study had a 
very high risk of bias.40

Interventions

Of the seven studies that assessed the effect of various 
types of dairy and/or dairy derivatives, four assessed 
the effect of fermented dairy including yogurt and 
kefir,40-43 two assessed the effect of whey and casein 
proteins,44,45 and one assessed the effect of bovine 
milk.39 Only one study investigated the quantity of 
dairy (low vs high intake) consumed.46

Microbiome quantification

Two studies used quantitative polymerase chain 
reaction (qPCR)42,43 and four used 16S rRNA 
sequencing.41,44-46 The seventh study used both 
qPCR and bacterial Tag-encoded FLX amplicon 
pyrosequencing (bTEFAP) sequencing.39 

A culture dependant method was used by another 
study by Link-Amster et al.40 (Table 3).

The effects of the type of dairy and dairy derivatives 
on the gut microbiota

Milk
Fernandez-Raudales et al.39 compared the effect 
of three-months of bovine milk consumption to 
two types of soymilk (low glycine soymilk and 
conventional soymilk) consumption on the gut 
microbiota composition in obese participants, 
using qPCR and bTEFAP. The qPCR results 
demonstrated that there was a significant increase 

Table 2. Population characteristics.

Study Country
Sample size enrolled and 

completed
Female 

%
Age 

mean Population type Inclusion criteria

Fernandez-Raudales 
et al.39

United Sates of 
America

Enrolled: 81 
Completed: 64

0 32 Overweight subjects (i) No usage of antibiotics; (ii) Non- 
lactose intolerant;(iii) No smoking;(iv) 
Non-athlete; (v) Non-vegetarian

Link-Amster et al.40 Switzerland Enrolled: 30 
Completed: 30

14 47 Healthy (i) Non-lactose intolerant; (ii) No recent 
antibiotic treatment; (iii) No 
vaccination with Salmonella typhi 
during 5 year period preceding the 
study

Odamaki et al.41 Japan Enrolled: 33 
Completed: 31

68 52 Healthy (i) No vegetarians; (ii) Normal stool 
frequency

Odamaki et al.42 Japan Enrolled: 32 
Completed: 32

66 40 Healthy (i) Consumption of yogurt less than 
twice a week

Yilmaz et al.43 Turkey Enrolled: 45 
Completed: 45

49 39 Patients with IBD (i) No allergies or intolerance to milk; (ii) 
Alcohol consumption < 20 g/day; (iii) 
No antibiotic treatment within the 
last 1 month; (iv) No column or bowel 
operation history up to 3 months 
before the start of the study; (v) No 
infection in proceeding month

Beaumount et al.44 France Enrolled: 42 
Completed: 38

66 30 Healthy overweight 
(25< BMI <30)

(i) No GI disease; (ii) No usage of 
antibiotics during the last 3 months 
before the intervention; (iii) No dairy 
intolerance; (iv) No smoking

Reimer et al.45 Canada Enrolled: 125 
Completed: 96

53 40 Overweight or obese 
(BMI > 25, age 
18–75)

(i) No antibiotics during the past three 
months; (ii) Body mass <350 Ib; (iii) 
No major GI surgeries, diabetes, CVD, 
liver pancreas disease; (iv) No chronic 
use of antacids or bulk laxative

Bendtsen et al.46 Denmark Enrolled: 80 
Completed:52

87 44 Overweight subjects (i) No gastrointestinal diseases; (ii) No 
dairy food allergies; (iii) No infectious 
or metabolic diseases; (iv) No use of 
dietary supplements during the study 
or 6 months prior to the study; (iv) No 
use of cholesterol-lowering medicine; 
(vii) Women could not be pregnant or 
lactating

BMI: body mass index; CVD: cardiovascular disease; GI: gastrointestinal; IBD: inflammatory bowel disease.
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in Lactobacillus and a non-significant increase in 
Bifidobacterium copy numbers in the bovine milk 
group compared to the soymilk groups at the end 
of the intervention. The bTEFAP showed that 
bacterial diversity was reduced at the end of 
intervention in all three groups, independent of 
the type of milk consumed. Similarly, bacterial 
richness, estimated using ACE and Chao1 
indices, declined in all three groups. In the 
bovine milk group, the Firmicutes to 
Bacteroidetes ratio remained unchanged, while 
Roseburia tended to increase and Prevotella 
tended to decrease (Table 4).

Fermented dairy
Four RCTs assessed the effects of fermented dairy 
(yogurt and kefir) on the gut microbiota.40-43 Of 
these, three40-42 reported the effect of yogurt and 
one43 study reported the effect of kefir on the gut 
microbiota composition. Link-Amster et al.40 

reported that consumption of fermented yogurt 
increased Lactobacillus and Bifidobacterium counts 
during the three week intervention period com
pared to the control arm, which consumed a usual 
diet but no fermented dairy/placebo. Additionally, 
a significant four-fold increase in specific serum 
IgA titer against Salmonella typhi Ty21a was 
observed in the intervention arm.40 Odamaki et al.41 

demonstrated that yogurt intake reversed the shift 
created in the microbiota composition due to the 
intake of a mainly animal-based diet. All partici
pants in this trial received a diet based mainly of 
animal products for five days, followed by 
a ‘balanced-diet’ for 14 days. Participants were ran
domized to one of three groups: the first group 
ingested 200 g of yogurt during both the animal 
and balanced diet period, while subjects in 
the second group ingested 200 g yogurt only during 
the balanced-diet period. Subjects in the third (con
trol) group did not receive yogurt during either of 
the dietary phases. No differences in the alpha or 
beta diversity of the fecal microbiota were observed 
during the study for any groups during or following 
the dietary interventions.42 However, at the end of 
the animal-based diet phase, the relative abundance 
of genera Odoribacter, Bilophila, Dorea, and 
Ruminococcus increased, and the genus 
Bifidobacterium decreased, in participants who 
had not yet received the yogurt intervention Ta
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(i.e. second group ingesting yogurt in the ‘balanced 
diet’ phase only, and the control group). The rela
tive abundances of these genera were significantly 
associated with the fat, carbohydrate, and fiber con
tents of the animal-based diet. Such changes were 
not observed in those receiving yogurt alongside 
the animal-based diet, prompting the authors to 
conclude that the effects of the animal-based diet 
on gut bacteria were mitigated by the yogurt con
sumption. In the two intervention groups, the 
microbiota composition returned to baseline levels 
following the balanced diet phase, but not in the 
control group (Table 4). The third study showed 
that yogurt intake for the period of 8 weeks signifi
cantly decreased the cell number of enterotoxigenic 
Bacteroides fragilis compared to the control arm 
that consumed milk.42

The RCT conducted by Yilmaz et al.43 investi
gated the effect of kefir on the gut microbiota in 
patients with inflammatory bowel disease. The test 
group consumed 400 mL/d of kefir for 4 weeks 
while the control group did not consume any fer
mented dairy (no placebo was provided either). The 
genera Lactobacillus was higher in the test group 
compared to control group (Table 4) at the end of 
the study period.

Dairy derivatives
Beaumont et al.44 randomly assigned healthy over
weight participants into three groups to receive 
a dietary supplement composed of soy protein, 
casein protein, or maltodextrin for 5 weeks. There 
were no significant changes in alpha or beta diversity 
within or between the three groups over the period 
of intervention.44 Another RCT using whey protein 
reported similar results. Reimer et al.45 randomized 
obese subjects to four groups to receive isocaloric 
snack bars with different ingredients over a period of 
12 weeks: (1) control bar; (2) inulin prebiotic bar; (3) 
whey protein bar; and (4) a combination whey pro
tein and inulin bar. At the end of the intervention, 
there were changes in overall microbial structure in 
group two (inulin bar) and four (combination of 
whey protein and inulin bar), while the abundance 
of genus Bifidobacterium increased, and alpha diver
sity also decreased in these two groups (Table 4). In 
contrast, there were no differences reported in either 
group one (control bar) or three (whey protein bar).

The effects of the quantity of dairy consumed on the 
gut microbiota

In a 24-week RCT, Bendtsen et al.46 observed that 
the quantity of dairy consumed did not result in 
significant changes to gut microbiota composition 
(genus or taxa level) in obese subjects. Participants 
in this trial were randomized to receive either 
a hypocaloric diet with high dairy intake or hypo
caloric diet with low dairy intake. In this study, the 
quantity of dairy consumed was defined by calcium. 
The high dairy group consumed dairy in an amount 
equivalent to 1500 mg/d of calcium and the low 
dairy group consumed dairy equivalent to 600 mg/ 
d of calcium. There were no significant changes 
observed in the gut microbiota composition or 
alpha diversity between the two groups. However, 
the relative abundance of genus Veillonella reduced 
between baseline and week 24 in the low dairy 
group (Table 4).46

Discussion

To our knowledge, this is the first systematic litera
ture review to collate evidence on all types of dairy 
and dairy-derived products and evaluate their possi
ble effects on human gut microbiota composition. 
Our study results revealed that milk intake increased 
the relative abundance of genera Lactobacillus and 
Bifidobacterium and reduced the bacterial 
diversity.39 Similarly, fermented dairy intake (i.e. 
yogurt and kefir) increased the abundance of genera 
Lactobacillus and Bifidobacterium.40,41,43 Moreover, 
two studies indicated that yogurt consumption was 
protective against pathogenic bacterial strains i.e. 
Bacteroides fragilis and Salmonella typhi.40,42 

However, it was demonstrated that neither casein 
or whey nor quantity of dairy consumed prompted 
changes to the gut bacterial taxa from phylum to 
species level and overall diversity.44-46 Nevertheless, 
it was indicative that milk and fermented dairy pro
ducts may modulated the gut microbiota in 
a manner that may benefit the host by facilitating 
the growth of Lactobacillus and Bifidobacterium, 
which are considered probiotic species that – by 
definition – benefit host health.47

In our study, the changes that dairy products 
may prompt to the gut microbiota was analyzed 
in relation to the biological profile and quantity of 
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dairy consumed; this was taking in to consideration 
the distinct biological profile of each dairy products 
(i.e. unfermented dairy, fermented dairy, dairy 
derivatives) and the differing pathways by which 
they might influence the gut microbiota. Although 
some dairy products (i.e. milk, yogurt, kefir) 
demonstrated commonality in enhancing the 
growth of certain bacterial taxa (i.e. Lactobacillus, 
Bifidobacterium), some studies reported differential 
effects of dairy products on the gut microbiota. 
Reduced bacterial diversity – a marker often asso
ciated with host health48,49 – was reduced in parti
cipants consuming bovine milk, as well as in the 
control conditions, and there were indications of 
reductions in Prevotella in the bovine milk group. 
Although Prevotella is considered a commensal 
phylotype, some studies have reported a link 
between certain strains of Prevotella and inflamma
tory status.50,51 However, neither the quantity of 
dairy consumed, nor dairy derivatives such as 
casein or whey isolates, had a meaningful impact 
on the human gut microbiota composition. Thus, 
the impact of dairy consumption on the gut micro
biota remains unclear.

Limitations and strengths of the study

Some of the exclusion criteria that were deployed in 
designing this study such as excluding studies that 
are not published in English and excluding 
abstracts (i.e. no full text available in English, no 
full text available) may have eliminated eligible 
studies and this is a limitation (Appendix 1). Only 
three RCTs were double blinded39,44,45 and others 
were open-label studies.40-43,46 The unblinded trials 
are prone to bias estimates of treatment effects.52 

However, in RCTs with biological outcomes this is 
less of an issue. Although only RCTs were included 
in this systematic literature review, there were 
methodological inconsistencies and heterogeneity 
in trial settings, study subjects, microbiota analysis 
techniques (e.g. 16s RNA, culture-dependant meth
ods), microbial outcomes (relative abundance, 
alpha, and beta-diversity), sample sizes, and study 
products; this precluded us from conducting 
a meta-analysis.

The use of varying microbial analysis techniques 
is another problematic characteristic of included 
studies; firstly, the use of culture-dependant 

analyses in one study40 reduced the comparability 
with other studies, which used culture-independent 
techniques such as qPCR and 16s rRNA.39,41-46 

Although five studies used 16s RNA high through
put sequencing, the analysis methods encompassed 
different variable regions, different pipelines, and 
different databases that may have influenced the 
result to varying extents (Table 3).39,41,44-46 

Moreover, fecal sample collection methods, sample 
processing methods, and DNA extraction methods 
influence the output generated.53-55 RNA later sta
bilizer solution was used for sample collection in 
one study,41and others employed cold-chain collec
tion methods (i.e. no stabilizer). Importantly, the 
use of stabilizer kits (i.e. RNA later) may lead to 
disruptions in sequencing results, such as decreased 
species relative abundance.56,57 Additionally, stu
dies differed significantly in terms of methods 
used to extract bacterial DNA, which can influence 
DNA yield, purity, and ultimately, microbiome 
outcomes.58,59As such, this may have also influ
enced the results. Additionally, three studies lim
ited the analysis of the gut microbiota a priori to 
certain phylotypes: Firmicutes (Lactobacillus) and 
Actinobacteria (Bifidobacterium)40,43 or 
Bacteroidetes (Bacteroides fragilis),42 making com
parisons challenging. Whilst there are emerging 
methodologies for power calculations of micro
biome studies, there is no established practice for 
microbiome outcomes in RCTs.60 Besides, none of 
the included studies undertook a power calculation 
for microbiome outcomes, thus it is not possible to 
establish whether they were adequately powered to 
detect differences at the various taxonomic levels. 
This is a limitation of all studies included. Also, all 
studies were small and given the inherent multiple 
testing and corresponding false discovery rate cor
rections required for microbiome analyses it is pos
sible that all included studies were underpowered.

Host characteristics are key in determining the 
gut microbiota composition and disparities in sex, 
population type (e.g. healthy, obese or overweight, 
inflammatory bowel disease) and geographical 
location differently influence the gut microbiota 
composition.22,24-27 The RCTs that were included 
in evidence synthesis were conducted in different 
geographical regions and on different populations 
(i.e. diseased and healthy), which may have also 
affected the gut microbiota outcomes. Of the eight 
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studies, six studies39,40,43-46 considered a range of 
external key factors including use of antibiotics, 
medications, probiotics, and supplements that 
may also influence the gut microbiota.61,62 The 
impacts from these factors were controlled or 
omitted by entailing stringent inclusion/exclusion 
criteria (e.g. excluding participants with antibiotics 
use in the past three months) (Table 2). Moreover, 
two39,41 studies monitored conditions (e.g. illness, 
use antibiotic, diet) that may impact the gut micro
biota whilst participants were engaged in the inter
vention. All but three studies43,45,46 had a washout/ 
run-in-period that preceded the intervention phase, 
which ensured dietary normalization and exclusion 
of any residual impacts from dairy prior to baseline; 
this is important given that the interventions com
prised dairy products (Table 3). However, the RCTs 
included in this review did not assess compliance to 
the intervention/study products in both the experi
mental and control groups; consequently, noncom
pliance (i.e. consuming dairy external to the 
intervention) may be unaccounted and this is 
a limitation of all studies.

Components of dairy (e.g. protein, fat) and type of 
dairy (e.g. fermented and unfermented) may influ
ence the gut microbiota differently; therefore, it is 
important to stipulate detailed description of the 
dairy product composition used in the intervention 
(e.g. low fat milk or full cream milk) in order to assess 
its impact on the gut microbiota composition. Two 
studies did not provide details on dairy composition39 

or the type of dairy46 used as intervention, which 
precluded meaningful interpretations.

Of note, four studies40-43 assessed the impact of 
fermented dairy products that were produced by 
inoculating probiotic cultures; this also makes the 
generalization of conclusions challenging as differ
ent cultures are likely to have differential impacts 
on the gut microbiota. Moreover, during the pro
cess of fermentation, a myriad of biologically active 
molecules are synthesized including bio-active pep
tides, vitamins, and prebiotics, adding more func
tional and nutritive value to the original substrate, 
which in turn may influence the gut microbiota 
differentially.63 When assessing the impacts of fer
mented dairy on the gut microbiota in humans, 
distinguishing the effects exerted by dairy compo
nents versus bacterial cultures is not possible due to 
synergistic effects.

Finally, all studies included in this systematic 
review used stool samples as a proxy to determine 
the gut microbiota composition. The microbiota in 
the stool sample may not reflect the species in the 
whole gastrointestinal (GI) tract, because stools 
mostly represent the bacterial species in the lumen 
and the lower GI tract.23,64 Thus, stool samples may 
not reflect the change to the bacterial species in the 
upper GI tract in response to external (e.g. diet, 
medications) or internal (e.g. disease) determinants.

Mechanisms by which dairy may influence the gut 
microbiota

The gut microbiota is constructed of five primary 
bacterial phyla (Firmicutes, Bacteroidetes, 
Actinobacteria, Proteobacteria and Fusobacteria), 
although Firmicutes and Bacteroidetes comprise 
90% of the gut microbiome.65 However, this propor
tion may not be similar in all individuals due to inter- 
personal variations created by environment, genetics, 
diet, and disease.22,24-27,66 Diet is increasingly recog
nized as a modulator of the gut microbiota.21 Dairy 
products contain an array of nutrients including pro
teins, lipids, carbohydrates, amino acids, minerals and 
vitamins; any of these components may have potential 
to influence the gut microbiota composition.36,67,68 

However, we speculate that dairy products may influ
ence the gut microbiota via mechanistic pathways 
such as: (1) facilitating the growth of beneficial 
strains,69 (2) suppressing the growth of pathogenic 
strains,70 and (3) altering the gastrointestinal (GI) 
environment (Figure 2).33,71,72

Promoting the growth of beneficial bacteria

Five studies39-43 included in this review demon
strated the potential of dairy products including 
milk and fermented dairy (i.e. yogurt and kefir) to 
increase the growth of so-called beneficial 
bacteria.40-43 Lactobacillus and Bifidobacterium are 
two major bacterial genera that are considered to be 
‘probiotics’ due to their demonstrated benefits to 
host health, such as improving metabolic disequili
brium, immune modulation and regulating 
inflammation.73 Components of dairy such as lac
tose and protein possess potential to stimulate the 
growth of these bacterial genera. Lactose is the key 
milk carbohydrate; it exists in a concentration of 
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53 g/L and is often referred to as ‘milk sugar’.74 

Both in vitro and in vivo studies have demonstrated 
that lactose increased the growth of 
Bifidobacterium and Lactobacillus.67,75 Lactose 
also contains a prebiotic index of 5.75, which is 
similar to many other prebiotics.69,76 Prebiotics 
are a fermentable ingredient that instigates specific 
changes to both the composition and/or activity of 
the gastrointestinal microbes rendering health ben
efits. Milk proteins also hold potential to facilitate 
the growth of Bifidobacterium and Lactobacillus. 
Casein forms 80% of milk protein and is composed 
of four sub-units (α-caseinS1, α-caseinS2, β-casein, 

κ-casein). A κ-casein derived hydrolyzates demon
strated growth stimulatory effects on 
Bifidobacterium bifidum in a synthetic culture 
media.68 Whey protein forms 20% of milk proteins 
and include the water-soluble protein fraction: α- 
lactoalbumin, β-lactoglobulin, immunoglobulins 
(Ig), lactoferrin, serum albumin, lactoperoxidase 
and lysozymes. Short peptides produced by the 
proteolytic digestion of β-lactoglobulin showed 
growth proliferation effects on Bifidobacterium 
and Lactobacillus spp.77 Further, lactoferrin hydro
lyzates increased the growth of Bifidobacterium 
adolescentis B-1 in a dose dependant manner.78

Figure 2. Mechanistic pathways by which dairy and its components may impact the gastrointestinal environment and the gut 
microbiota composition. Antimicrobial and stimulatory peptides produced by milk protein digestion and lactose facilitates the growth 
of so-called beneficial bacterial genera such as Lactobacillus and Bifidobacterium. Milk fat and opioid peptides (produced during protein 
digestion) negatively alter the luminal environment by inducing inflammation and increasing the gastrointestinal transit time, which 
consequently perturb the gut microbiota composition. Fermented dairy products favor the growth of beneficial bacteria in the gut via 
the active bacterial cultures and fermentation by-products.
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Suppressing the growth of pathogens

Two studies that were included in this review demon
strated the potential of dairy products to retard the 
growth of pathogenic strains.40,42 The study by 
Odamaki et al.42 showed that consumption of yogurt 
reduced Bacteroides fragilis, a strain that is associated 
with diarrheal disease, inflammatory bowel disease 
and colorectal cancer.79,80 Link-Amster et al.40 

reported that consumption of fermented yogurt 
increased specific serum IgA titer against an entero
pathogenic strain, Salmonella typhi. Dairy products 
may suppress the growth of pathogenic strains via two 
pathways: (1) competitive exclusion of pathogens by 
facilitating the growth of specific bacterial strains; and 
(2) yielding bio-active peptides (antimicrobial pep
tides) that retard the growth of pathogenic strains.

As discussed previously, certain components of 
dairy itself (e.g. lactose, bio-active molecules produced 
by fermentation and peptides) facilitate the growth of 
probiotic bacteria, which in turn aids in pathogen 
elimination via creating competition for adhesion 
sites and producing anti-microbial peptides.47 When 
subjected to enzymatic digestion, milk proteins can 
yield bio-active peptides that contain potential anti
microbial properties. Isracidin, a peptide that is pro
duced by enzymatic digestion of α-caseinS1, 
demonstrates a broad spectrum of antibacterial action 
by restricting the growth of pathogenic strains such as 
Staphylococcus aureus, Streptococcus pyogenes and 
Listeria monocytogenes.70 Casocidin is another anti
microbial peptide that is produced by the enzymatic 
digestion of α-caseinS2 and demonstrates potential to 
inhibit Escherichia coli and Staphylococcus carnosus.70 

One animal study showed that rats fed a casein- 
prebiotic mix had lower numbers of Clostridium per
fringens compared to those fed a soy-prebiotic mix.34 

Additionally, whey protein yields antimicrobial pep
tides and effectively arrests the growth of Escherichia 
coli, Klebsiella pneumoniae, Staphylococcus aureus, 
Staphylococcus epidermidis, Staphylococci and 
Candida albicans.81,82

Altering the gastrointestinal environment

Dairy components, in particular milk proteins and 
fats, are capable of changing the luminal 

environment and thereby instigating changes to 
the gut microbiota composition.33,71,72 The A1 
beta-casein protein fraction in dairy has shown to 
alter the GI transit time and trigger GI inflamma
tion by producing opioid peptides, which in turn 
may influence the gut microbiota composition.83-85 

Although evidence do exist to show the potential of 
A1 beta-casein to increase GI transit time and trig
ger inflammation, the subsequent impact of these 
events on the gut microbiota has not been studied 
yet in both animal and human studies.86-92 Our 
study did include research that assessed the impact 
of casein extracts on the gut microbiota,44 however, 
revealed no impact on the gut microbiota. Evidence 
from animal models demonstrates that milk fat 
intake reduced the abundance of certain bacterial 
taxa (i.e. Tenericutes) with a concomitant elevation 
in inflammatory markers.33 However, in our sys
tematic review most of the studies failed to provide 
the nutritional composition of dairy products, lim
iting the understanding of the specific contribution 
of dairy fats toward the changes in the gut micro
biota composition.

Conclusion

The results of this systematic review suggest that 
some types of dairy modulate the gut microbiota 
composition in a manner that may benefit the host. 
Milk, yogurt and kefir consumption appeared to 
facilitate the growth of functional phylotypes i.e. 
Lactobacillus, Bifidobacterium that have been related 
to improved host health. However, the quantity of 
dairy and dairy derivatives (i.e. casein and whey) 
revealed negligible impacts on the gut microbiota. 
Given the heterogeneity in study methods and out
come reporting, and the unblinded nature of trials, it 
is difficult to draw robust conclusions. Future trials 
may benefit from encompassing rigorous blinded 
study design and a priori power calculation that 
ensures adequate sample size. To date the extant 
evidence on dairy and its implication on the gut 
microbiota is limited, relative to the widespread 
application and the different types of dairy available 
for consumers. Moreover, the impacts of dairy pro
ducts on the gut microbiota in relation to dairy 
composition (e.g. full fat, low fat) are understudied. 
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Therefore, further studies are warranted to better 
understand the broader impacts of dairy products 
on the gut microbiota.
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Appendix 1

Record numbers

Total articles from search 6592

Duplicates removed 1499
Remaining records for screening 5093

Title and abstract exclusion
Animal/in vitro studies 118

Studies in children 15
Conference abstracts 11

Studies on other cattle’s product (e.g. donkey, sheep, goat) 68
Studies on human milk 116
Studies on infants and infant formulae 69

Not in English 2
Off topic 4598

Review articles 44
Not RCTs 22

Total ineligible studies 5063
Records available for full text assessment 30
Full text assessment
Full text not available or not in English 5
Comparator not complying with study criteria 14

Wrong study 3
Total ineligible studies 22

Full text included in analysis 8
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